PAPER-1 (B,E/B. TECH) JEE (Main) 2020
 COMPUTER BASED TEST (CBT) Memory Based Questions \& Solutions
 Date: 07 January, 2020 (SHIFT-1) | TIME : (9.30 a.m. to 12.30 p.m)
 Duration: $\mathbf{3}$ Hours | Max. Marks: 300
 SUBJECT : PHYSICS

PART : PHYSICS

Straight Objective Type (सीधे वस्तुनिष्ठ प्रकार)

This section contains 20 Single choice questions. Each question has 4 choices (1), (2), (3) and (4) for its answer, out of which Only One is correct. इस खण्ड में 20 एकल विकल्पी प्रश्न हैं। प्रत्येक प्रश्न के 4 विकल्प (1), (2), (3) तथा (4) हैं, जिनमें से सिर्फ एक सही है।

1. A block of mass m is suspended from a pulley in form of a circular disc of mass m \& radius R. The system is released from rest, find the angular velocity of disc when block has dropped by height h. (there is no slipping between string \& pulley)

(1) $\frac{1}{R} \sqrt{\frac{4 g h}{3}}$
(2) $\frac{1}{R} \sqrt{\frac{2 g h}{3}}$
(3) $R \sqrt{\frac{2 g h}{3}}$
(4) $R \sqrt{\frac{4 g h}{3}}$

Ans. (1)
Sol. $m g h=\frac{1}{2} m v^{2}+\frac{1}{2} I \omega^{2}$
$\mathrm{v}=\omega \mathrm{R}$ (no slipping)
$m g h=\frac{1}{2} m \omega^{2} R^{2}+\frac{1}{2} \frac{m R^{2}}{2} \omega^{2}$
$\mathrm{mgh}=\frac{3}{4} m \omega^{2} R^{2}$
$\omega=\sqrt{\frac{4 g h}{3 R^{2}}}=\frac{1}{R} \sqrt{\frac{4 g h}{3}}$
2. Three point masses $1 \mathrm{~kg}, 1.5 \mathrm{~kg}, 2.5 \mathrm{~kg}$ are placed at the vertices of a triangle with sides $3 \mathrm{~cm}, 4 \mathrm{~cm}$ and 5 cm as shown in the figure. The location of centre of mass with respect to 1 kg mass is :

(1) 0.6 cm to the right of 1 kg and 2 cm above 1 kg mass
(2) 0.9 cm to the right of 1 kg and 2 cm above 1 kg mass
(3) 0.9 cm to the left of 1 kg and 2 cm above 1 kg mass
(4) 0.9 cm to the right of 1 kg and 1.5 cm above 1 kg mass

Ans. (2)

Sol. Take 1 kg mass at origin

$X_{\mathrm{cm}}=\frac{1 \times 0+1.5 \times 3+2.5 \times 0}{5}=0.9 \mathrm{~cm}$
$Y_{c m}=\frac{1 \times 0+1.5 \times 0+2.5 \times 4}{5}=2 \mathrm{~cm}$
3. In a single slit diffraction set up, second minima is observed at an angle of 60°. The expected position of first minima is
(1) 25°
(2) 20°
(3) 30°
(4) 45°

Ans. (1)
Sol. For $2^{\text {nd }}$ minima
$d \sin \theta=2 \lambda$
$\sin \theta=\frac{\sqrt{3}}{2}$ (given)
$\Rightarrow \quad \frac{\lambda}{d}=\frac{\sqrt{3}}{4}$
So for $1^{\text {st }}$ minima is
$d \sin \theta=\lambda$
$\sin \theta=\frac{\lambda}{d}=\frac{\sqrt{3}}{4}$ (from equation (i))
$\theta=25.65^{\circ}$ (from sin table)
$\theta \approx 25^{\circ}$
4. There are two infinite plane sheets each having uniform surface charge density $+\sigma \mathrm{C} / \mathrm{m}^{2}$. They are inclined to each other at an angle 30° as shown in the figure. Electric field at any arbitrary point P is:

(1) $\frac{\sigma}{2 \varepsilon_{0}}\left[\left(1-\frac{\sqrt{3}}{2}\right) \hat{y}-\frac{1}{2} \hat{\mathrm{x}}\right]$
(2) $\frac{\sigma}{2 \varepsilon_{0}}\left[\left(1+\frac{\sqrt{3}}{2}\right) \hat{\mathrm{y}}-\frac{1}{2} \hat{\mathrm{x}}\right]$
(3) $\frac{\sigma}{2 \varepsilon_{0}}\left[\left(1-\frac{\sqrt{3}}{2}\right) \hat{\mathrm{y}}+\frac{1}{2} \hat{\mathrm{x}}\right]$
(4) $\frac{\sigma}{2 \varepsilon_{0}}\left[\left(1+\frac{\sqrt{3}}{2}\right) \hat{y}+\frac{1}{2} \hat{x}\right]$

Ans. (1)

Sol.

$\overrightarrow{\mathrm{E}}=\frac{\sigma}{2 \varepsilon_{0}} \cos 60^{\circ}(-\hat{\mathrm{x}})+\left[\frac{\sigma}{2 \varepsilon_{0}}-\frac{\sigma}{2 \varepsilon_{0}} \sin 60^{\circ}\right](\hat{\mathrm{y}})$
$\overrightarrow{\mathrm{E}}=\frac{\sigma}{2 \varepsilon_{0}}\left[\left(1-\frac{\sqrt{3}}{2}\right) \hat{\mathrm{y}}-\frac{1}{2} \hat{\mathrm{x}}\right]$
5. A parallel plate capacitor with plate area A \& plate separation d is filled with a dielectric material of dielectric constant given by $k=k_{0}(1+\alpha x)$. Calculate capacitance of system: (given $\alpha \mathrm{d} \ll 1$).

(1) $\frac{k_{0} \varepsilon_{0} A}{d}\left(1+\alpha^{2} d^{2}\right)$
(2) $\frac{k_{0} \varepsilon_{0} A}{d}\left(1+\frac{\alpha d}{2}\right)$
(3) $\frac{\mathrm{k}_{0} \varepsilon_{0} A}{2 d}(1+\alpha d)$
(4) $\frac{\mathrm{k}_{0} \varepsilon_{0} \mathrm{~A}}{2 \mathrm{~d}}\left(1+\frac{\alpha \mathrm{d}}{2}\right)$

Ans. (2)
Sol. Capacitance of element $=\frac{\mathrm{k} \varepsilon_{0} A}{d x}$

Capacitance of element, $\mathrm{C}^{\prime}=\frac{\mathrm{k}_{0}(1+\alpha \mathrm{x}) \varepsilon_{0} \mathrm{~A}}{\mathrm{dx}}$
$\sum \frac{1}{\mathrm{C}^{\prime}}=\int_{0}^{\mathrm{d}} \frac{\mathrm{dx}}{\mathrm{k}_{0} \varepsilon_{0} \mathrm{~A}(1+\alpha \mathrm{x})}$
$\frac{1}{\mathrm{C}}=\frac{1}{\mathrm{k}_{0} \varepsilon_{0} \mathrm{~A} \alpha} \ln (1+\alpha \mathrm{d})$
Given $\alpha \mathrm{d} \ll 1$
$\frac{1}{C}=\frac{1}{\mathrm{k}_{0} \varepsilon_{0} A \alpha}\left(\alpha d-\frac{\alpha^{2} d^{2}}{2}\right)$
$\frac{1}{C}=\frac{d}{\mathrm{k}_{0} \varepsilon_{0} A}\left(1-\frac{\alpha d}{2}\right)$
$C=\frac{k_{0} \varepsilon_{0} A}{d}\left(1+\frac{\alpha d}{2}\right)$
6. A long solenoid of radius R carries a time dependent current $I=I_{0} t(1-t)$. A ring of radius $2 R$ is placed coaxially near its centre. During the time interval $0 \leq t \leq 1$, the induced current IR and the induced emf V_{R} in the ring vary as:
(1) current will change its direction and its emf will be zero at $t=0.25 \mathrm{sec}$.
(2) current will not change its direction \& emf will be maximum at $t=0.5 \mathrm{sec}$
(3) current will not change direction and emf will be zero at 0.25 sec .
(4) current will change its direction and its emf will be zero at $t=0.5 \mathrm{sec}$.

Ans. (4)
Sol. $\quad \mathrm{I}=\mathrm{I} 0 \mathrm{t}-\mathrm{Iot}^{2}$
$\phi=\mathrm{BA}$
$\phi=\mu_{0} \mathrm{nIA}$
$V_{R}=-\frac{d \phi}{d t}=-\mu_{0} n A I O(1-2 t)$
$V_{R}=0$ at $t=\frac{1}{2}$
and $I_{R}=\frac{V_{R}}{\text { Resistance of loop }}$

7. If 10% of intensity is passed from analyser, then, the angle by which analyser should be rotated such that transmitted intensity becomes zero. (Assume no absorption by analyser and polarizer).
(1) 60°
(2) 18.4°
(3) 45°
(4) 71.6°

Ans. (B)
Sol. $\quad I=I_{0} \cos ^{2} \theta$
$\frac{I_{0}}{10}=I_{0} \cos ^{2} \theta$
$\cos \theta=\frac{1}{\sqrt{10}}=0.31$
$\theta=71.6^{\circ}$
angle rotated should be $=90^{\circ}-71.6^{\circ}=18.4^{\circ}$
8. Three moles of ideal gas A with $\frac{C_{P}}{C_{V}}=\frac{4}{3}$ is mixed with two moles of another ideal gas B with $\frac{C_{P}}{C_{V}}=\frac{5}{3}$. The $\frac{C_{P}}{C_{v}}$ of mixture is (Assuming temperature is constant)
(1) 1.5
(2) 1.42
(3) 1.7
(4) 1.3

Ans. (2)

Sol. $\quad \gamma_{\text {mixture }}=\frac{n_{1} C_{P_{1}}+n_{2} C_{P_{2}}}{n_{1} C_{V_{1}}+n_{2} C_{V_{2}}}=\frac{n_{1} \frac{\gamma_{1} R}{\gamma_{1}-1}+n_{2} \frac{\gamma_{2} R}{\gamma_{2}-1}}{\frac{n_{1} R}{\gamma_{1}-1}+\frac{n_{2} R}{\gamma_{2}-1}}$
on rearranging we get,
$\frac{\mathrm{n}_{1}+\mathrm{n}_{2}}{\gamma_{\text {mix }}-1}=\frac{\mathrm{n}_{1}}{\gamma_{1}-1}+\frac{\mathrm{n}_{2}}{\gamma_{2}-1}$
$\frac{5}{\gamma_{\text {mix }}-1}=\frac{3}{1 / 3}+\frac{2}{2 / 3}$
$\frac{5}{\gamma_{\text {mix }}-1}=9+3=12$
$\Rightarrow \gamma_{\text {mixure }}=\frac{17}{12}=1+\frac{5}{12}$
$\gamma_{\text {mix }}=1.42$
9. Given magnetic field equation is $B=3 \times 10^{-8} \sin (\omega t+k x+\phi) \hat{j}$
then appropriate equation for electric field (E) will be :
(1) $20 \times 10^{-9} \sin (\omega t+k x+\phi) \hat{k}$
(2) $9 \sin (\omega t+k x+\phi) \hat{k}$
(3) $16 \times 10^{-9} \sin (\omega t+k x+\phi) \hat{k}$
(4) $3 \times 10^{-9} \sin (\omega t+k x+\phi) \hat{k}$

Ans. (2)
Sol. $\frac{E_{0}}{B_{0}}=C$ (speed of light in vacuum)
$\mathrm{E}_{0}=\mathrm{B}_{0} \mathrm{C}=3 \times 10^{-8} \times 3 \times 10^{8}$

$$
=9 \mathrm{~N} / \mathrm{C}
$$

So $E=9 \sin (\omega t+k x+\phi)$
10. There is a LCR circuit, If it is compared with a damped oscillation of mass m oscillating with force constant k and damping coefficient 'b'. Compare the terms of damped oscillation with the devices in LCR circuit.
(1) $\mathrm{L} \rightarrow \mathrm{m}, \mathrm{C} \rightarrow \frac{1}{\mathrm{k}}, \mathrm{R} \rightarrow \mathrm{b}$
(2) $\mathrm{L} \rightarrow \mathrm{m}, \mathrm{C} \rightarrow \mathrm{k}, \mathrm{R} \rightarrow \mathrm{b}$
(3) $\mathrm{L} \rightarrow \mathrm{k}, \mathrm{C} \rightarrow \mathrm{b}, \mathrm{R} \rightarrow \mathrm{m}$
(4) $L \rightarrow \frac{1}{m}, C \rightarrow \frac{1}{k}, R \rightarrow \frac{1}{b}$

Ans. (1)
Sol. In damped oscillation
$m a+b v+k x=0$

C
$m \frac{d^{2} x}{d t^{2}}+b \frac{d x}{d t}+k x=0$

In the circuit
$-i R-L \frac{d i}{d t}-\frac{q}{c}=0$
$\mathrm{L} \frac{\mathrm{d}^{2} \mathrm{q}}{\mathrm{dt}^{2}}+\mathrm{R} \frac{\mathrm{dq}}{\mathrm{dt}}+\frac{1}{\mathrm{c}} \cdot \mathrm{q}=0$
Comparing equation (i) and (ii)
$m=L, b=R, k=\frac{1}{c}$
11. A lift can hold 2000kg, friction is 4000 N and power provided is 60 HP . ($1 \mathrm{HP}=746 \mathrm{~W}$) Find the maximum speed with which lift can move up.
(1) $1.9 \mathrm{~m} / \mathrm{s}$
(2) $1.7 \mathrm{~m} / \mathrm{s}$
(3) $2 \mathrm{~m} / \mathrm{s}$
(4) $1.5 \mathrm{~m} / \mathrm{s}$

Ans. (1)
Sol. $\quad 4000 \times \mathrm{V}+\mathrm{mg} \times \mathrm{V}=\mathrm{P}$
$\frac{60 \times 746}{4000+20000}=V$
$\mathrm{V}=1.86 \mathrm{~m} / \mathrm{s} . \approx 1.9 \mathrm{~m} / \mathrm{s}$.
12. A H-atom in ground state has time period $\mathrm{T}=1.6 \times 10^{-16} \mathrm{sec}$. find the frequency of electron in first excited state
(1) 7.8×10^{14}
(2) 7.8×10^{16}
(3) 3.7×10^{14}
(4) 3.7×10^{16}

Ans. (1)
Sol. $T \propto \frac{r}{v} \propto \frac{n^{2}}{z} \times \frac{n}{z} \propto \frac{n^{3}}{z^{2}}$

$$
\begin{aligned}
\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}} & =\frac{\mathrm{n}_{1}^{3}}{\mathrm{n}_{2}^{3}}=\frac{1}{8} \\
\mathrm{~T}_{2} & =8 \mathrm{~T}_{1} \\
& =8 \times 1.6 \times 10^{-16}=12.8 \times 10^{-16} \\
\mathrm{f}_{2} & =\frac{1}{12.8 \times 10^{-16}} \approx 7.8 \times 10^{14}
\end{aligned}
$$

13 to 25 Soon Available

